Cerium Ferrite Composites: A New Frontier in Electrochemical Reduction of Nitrates to Ammonia

<u>James Ebenezer</u>,^a Parthiban Velayudham,^a and Alex Schechter^{*},^{a,b} ^aDepartment of Chemical Sciences, Ariel University, Ariel 40700, Israel. ^bResearch and Development Centre for Renewable Energy, New Technology Centre, University of West Bohemia, 301 00 Pilsen, Czech Republic * Email: salex@ariel.ac.il; Tel.: +972 39371470; Fax: +972 547740254

In pursuit of sustainable ammonia synthesis and nitrate remediation, the electrochemical reduction of nitrate to ammonia (eNO₃RR) was explored as an alternative to the carbon-intensive Haber-Bosch process (HBP). The conventional HBP emits 1.6 to 2.0 tons of CO₂ per ton of ammonia,¹ whereas eNO₃RR, primarily when powered by renewable energy, offers a potential reduction in emissions and energy consumption. However, due to its complex reaction mechanism, eNO₃RR is hindered by challenges in catalytic activity and product selectivity. Addressing these challenges, we synthesized CeO₂/CeFeO₃ composites using a microwave polyol method with varying Ce:Fe atomic ratios and conducted comprehensive characterizations and kinetic investigations. Our electrochemical analysis indicated that pure CeO₂ catalysts provide a high ammonia yield rate of 4040.5 μ g/h/cm². However, this catalyst exhibits lower Faradaic Efficiencies (FE) of 50.6% at -0.45 V vs. RHE 0.1 M KOH electrolyte containing 0.1 M NO₃. Significant improvement in the FE was observed with the formation of the CeFeO₃ phase in the CeO₂/CeFeO₃ composite catalyst. The maximum FE of 88.1% was observed in catalysts containing 75% CeFeO₃ with an ammonia yield rate of 3223.9 µg/h/cm². Furthermore, only 3.1% of the FE contributed to parasitic hydrogen evolution, with the remainder being distributed to 8.0% hydroxylamine and 0.8% nitrite, both intermediates in the ammonia synthesis pathway. This composite catalyst-maintained stability over 25 cycles of one-hour chronoamperometric electrolysis at -0.45 V (a total of 25 hours) of eNO_3RR , with electrolyte exchange in each cycle. The improved catalytic performance is attributed to the intrinsic perovskite structure of CeFeO₃, which utilizes oxygen vacancies² for oxygen exchange with the NO_x intermediates. This study highlights the potential of rare earth orthoferrites, particularly cerium ferrite composites, to facilitate eNO₃RR. These materials present a promising avenue for sustainable ammonia production and environmental remediation, showcasing a viable alternative to traditional methods.

Keywords: Sustainable Ammonia Synthesis, Cerium Ferrite Composites (CeO₂/CeFeO₃), Efficiency and Selectivity, Environmental Remediation

References:

- 1. Yang, L. et al., Electrochim Acta 411, (2022).
- 2. Jabbarzare, S. et al., J Alloys Compd 694, 800–807 (2017).