Electrochemical detection of dopamine by a calixarene-cellulose acetate mixed Langmuir-Blodgett monolayer

Citation:

Yujuan Xu, Hao, Qingli , and Mandler, Daniel . 2018. “Electrochemical Detection Of Dopamine By A Calixarene-Cellulose Acetate Mixed Langmuir-Blodgett Monolayer”. Analytica Chimica Acta, 1042, Pp. 29-36. doi:10.1016/j.aca.2018.08.019.

Abstract:

The sensing performance of a Langmuir-Blodgett monolayer was significantly improved by controlling the film organization at the air-water interface. Cellulose acetate (CA) and 4-tert-butylcalix [6] arene (calix) were co-spread and formed a Langmuir film, which was efficiently transferred onto a preoxidized gold electrode, Au-ox. The modified gold electrode was applied as a fast, highly sensitive electrochemical sensing platform for the quantitative determination of a model molecule, dopamine (DA). The modified gold electrode, CA-calix/Au-ox, demonstrated better recognition and sensing ability towards dopamine as compared with electrodes modified by a single component. Under the optimized conditions, the reduction peak currents at the CA-calix/Au-ox increased linearly within the concentration range of dopamine from 5 to 100 and 100-7500 nM, and exhibited a very low limit of detection (LOD) of 2.54 nM (S/N = 3). These results suggest a simple, superior and efficient approach for the controllable rearrangement of Langmuir-Blodgett monolayers on a molecular level. The electroanalytical performance was optimized from the perspective of the electrode-electrolyte interface. (C 2018 Elsevier B.V. All rights reserved.