Abstract:
A new approach for assembling selective electrodes based on molecularly imprinted polymers (MIPs) is presented. The approach is based on the radical polymn. of a mixt. of methacrylic acid (MAA) and ethyleneglycol dimethacrylate (EGDMA) in the presence of an initiator, benzoyl peroxide (BPO) and an activator, N,N’-dimethyl-p-toluidine (DMpT) at room temp. and atm. pressure. To form nanometric thin polymeric films the polymn. soln. was spin-coated in the course of polymn. The different phys. and chem. parameters that affected the properties of the films, such as the spinning rate and the EGDMA:MAA ratio, were studied and optimized. A variety of techniques, e.g., rheoscopy, SEM, AFM, profilometry and electrochem., were used to characterize the films and the polymn. process. By optimizing the conditions very thin and reproducible films could be prepd. and imprinted. The electrochem. behavior of the films showed that they were permeable to water-sol. electroactive species providing that either polyethylene glycol or template species were added to the polymn. mixt. Finally, we demonstrated that films imprinted with ferrocenylmethyl alc. (Fc-MeOH) successfully extd. the imprinted species after their removal from MIPs. [on SciFinder(R)]Notes:
CAPLUS AN 2010:1119774(Journal)